IME
WOPTR

Scientific Program

Workshop on Continuous Optimization in Riemannian Manifolds

 26 A 28 de MARÇO de 2018, GOIÂNIA-GO

 

Programação:

Horário

Segunda

Terça

Quarta

09:00-09:50

Abertura Oficial/P1

P3

C12/ ST1

10:00-10:45

C1

C7

ST2/ ST3

10:45-11:30

C2

C8

ST4/ ST5

11:30-14:00

Almoço

Almoço

Almoço

14:00-14:30

C3

C9

 

14:30-15:00

C4

C10

 

15:00-15:30

C5

C11

 

15:30-16:00

C6

 

 

16:00-17:00

Coffe- break

P4

 

17:00-17:50

P2

Coffe-Break

 

18:00-19:00

 

S*

 

 

S*- Solenidade de entrega do título Doutor Honoris Causa a Paulo Roberto Oliveira (https://www.ufg.br/n/105112-professor-da-ufrj-recebe-titulo-de-doutor-honoris-causa )

 

Plenárias:

Solving convex feasibility problems in Hadamard manifolds

P1- João X. da Cruz Neto-UFPI

Metrically regular vector field and iterative processes for generalized equations in Hadamard manifolds

P2- Orizon P. Ferreira-UFG

Problema Euclidiano de Steiner no Rn

P3- Nelson Maculan-UFRJ

Problema de quase-equilíbrio: existência de solução

P4- Susana  Scheimberg -UFRJ

 

Conferências:

Algoritmo de ponto proximal inexato para minimização quase-convexa multiobjetivo em variedades de Hadamar

C1- Erik  P. Quiroz, Universidad Nacional Callao-Peru

Douglas-Rachford Method: a View from Strongly Quasi-Nonexpansive Operators

C2- Reinier D. Milan-IFG

An interior proximal method for DC programming

C3- Jurandir O. Lopes-UFPI

Kantorovichs theorem on Newtons method under majorant condition in Riemannian manifolds

C4- Tibério B. O. Martins-UFMT

 Local convergence of Newton’s method under a majorant condition in Riemannian manifolds

C5- Roberto C.M. Silva-UFAM

The steepest descent method for computing Riemannian center of mass on Hadamard manifolds

C6-João C. O. Souza-UFPI

On the pointwise iteration-complexity of a dynamic regularized  ADMM with over-relaxation stepsize

C7- Max L.N. Gonçalves-UFG

Non-linear conjugate gradient methods for vector optimisation on Riemannian manifolds

C8- L. R. Lucambio Perez-UFG

A two-phase proximal point algorithm in domains of positivity and applications

C9- Ronaldo M. Gregório-UFRRJ

Extended Newton-type method for nonlinear functions with values in a cone

C10- Gilson N. Silva-UFBA

An extragradient-type algorithm for variational inequality on Hadamard manifolds

C11- Edvaldo E. A. Batista-UFBA

Iteration-Complexity of Gradient, Subgradient and Proximal Point Methods on Riemannian Manifold

C12- Jefferson G. Melo-UFG

 

Sessões Técnicas:

An inexact Newton-like conditional gradient method for constrained nonlinear systems

ST1- Fabrícia R. Oliveira-UFG

Proximal point method for center of mass on sphere

ST2- Lucas V. Meireles-UFG

Iteration-complexity analysis  of a generalized  alternating  direction method of multipliers

ST3- Vando A. Adona-UFG

Newton's method for locally Lipschitz continuous vector field on Riemannian Manifolds

ST4- Fabiana R. Oliveira-UFG

Iteration-Complexity of Subgradient Methods on Riemannian Manifolds

ST5-Maurício S. Louzeiro--UFG