Scientific Program
3˚ Workshop on Continuous Optimization in Riemannian Manifolds
26 A 28 de MARÇO de 2018, GOIÂNIA-GO
Programação:
Horário |
Segunda |
Terça |
Quarta |
09:00-09:50 |
Abertura Oficial/P1 |
P3 |
C12/ ST1 |
10:00-10:45 |
C1 |
C7 |
ST2/ ST3 |
10:45-11:30 |
C2 |
C8 |
ST4/ ST5 |
11:30-14:00 |
Almoço |
Almoço |
Almoço |
14:00-14:30 |
C3 |
C9 |
|
14:30-15:00 |
C4 |
C10 |
|
15:00-15:30 |
C5 |
C11 |
|
15:30-16:00 |
C6 |
|
|
16:00-17:00 |
Coffe- break |
P4 |
|
17:00-17:50 |
P2 |
Coffe-Break |
|
18:00-19:00 |
|
S* |
|
S*- Solenidade de entrega do título Doutor Honoris Causa a Paulo Roberto Oliveira (https://www.ufg.br/n/105112-professor-da-ufrj-recebe-titulo-de-doutor-honoris-causa )
Plenárias:
Solving convex feasibility problems in Hadamard manifolds
P1- João X. da Cruz Neto-UFPI
Metrically regular vector field and iterative processes for generalized equations in Hadamard manifolds
P2- Orizon P. Ferreira-UFG
Problema Euclidiano de Steiner no Rn
P3- Nelson Maculan-UFRJ
Problema de quase-equilíbrio: existência de solução
P4- Susana Scheimberg -UFRJ
Conferências:
Algoritmo de ponto proximal inexato para minimização quase-convexa multiobjetivo em variedades de Hadamar
C1- Erik P. Quiroz, Universidad Nacional Callao-Peru
Douglas-Rachford Method: a View from Strongly Quasi-Nonexpansive Operators
C2- Reinier D. Milan-IFG
An interior proximal method for DC programming
C3- Jurandir O. Lopes-UFPI
Kantorovichs theorem on Newtons method under majorant condition in Riemannian manifolds
C4- Tibério B. O. Martins-UFMT
Local convergence of Newton’s method under a majorant condition in Riemannian manifolds
C5- Roberto C.M. Silva-UFAM
The steepest descent method for computing Riemannian center of mass on Hadamard manifolds
C6-João C. O. Souza-UFPI
On the pointwise iteration-complexity of a dynamic regularized ADMM with over-relaxation stepsize
C7- Max L.N. Gonçalves-UFG
Non-linear conjugate gradient methods for vector optimisation on Riemannian manifolds
C8- L. R. Lucambio Perez-UFG
A two-phase proximal point algorithm in domains of positivity and applications
C9- Ronaldo M. Gregório-UFRRJ
Extended Newton-type method for nonlinear functions with values in a cone
C10- Gilson N. Silva-UFBA
An extragradient-type algorithm for variational inequality on Hadamard manifolds
C11- Edvaldo E. A. Batista-UFBA
Iteration-Complexity of Gradient, Subgradient and Proximal Point Methods on Riemannian Manifold
C12- Jefferson G. Melo-UFG
Sessões Técnicas:
An inexact Newton-like conditional gradient method for constrained nonlinear systems
ST1- Fabrícia R. Oliveira-UFG
Proximal point method for center of mass on sphere
ST2- Lucas V. Meireles-UFG
Iteration-complexity analysis of a generalized alternating direction method of multipliers
ST3- Vando A. Adona-UFG
Newton's method for locally Lipschitz continuous vector field on Riemannian Manifolds
ST4- Fabiana R. Oliveira-UFG
Iteration-Complexity of Subgradient Methods on Riemannian Manifolds
ST5-Maurício S. Louzeiro--UFG